ESTUDO SOBRE PLANTAS DE CONCENTRAÇO DE ENERGIA SOLAR: UMA REVISÃO SISTEMÁTICA

Autores

  • Abner Roberto Araújo SILVA
  • Pedro Ricardo Rodrigues LEITE
  • Roberto Capparelli MARà‡AL
  • Rodrigo Moraes PIRES

Palavras-chave:

energia solar, concentração de energia solar, inovação, tecnologia

Resumo

O USO DE CONCENTRA��O DE ENERGIA SOLAR PARA COGERA��O RECEBEU ATEN��O SIGNIFICATIVA ENTRE PESQUISADORES, EMPRESAS PRODUTORAS DE ENERGIA E, TAMB�M, OS LEGISLADORES DE POL�TICAS ESTADUAIS. O COLETOR PARABÓLICO E A TORRE DE ENERGIA SOLAR SÃO OS DOIS SISTEMAS DOMINANTES DE CONCENTRA��O DE ENERGIA QUE EST�O OPERANDO OU EST�O EM FASE DE CONSTRU��O. OS ESTADOS UNIDOS E A ESPANHA SÃO L�DERES GLOBAIS NA GERA��O DE ELETRICIDADE DE CONCENTRA��O DE ENERGIA SOLAR (CSP), ENQUANTO PA�SES EM DESENVOLVIMENTO, COMO CHINA E �NDIA, EMERGEM POR INVESTIMENTOS AGRESSIVOS. A CADA ANO, CENTENAS DE ARTIGOS RELACIONADOS A ESTE TEMA SÃO PUBLICADOS. NO ENTANTO, � NECESS�RIO OBSERVAR O DESENVOLVIMENTO GERAL DA PESQUISA NESTE CEN�RIO, QUE ESTÁ FALTANDO NO CORPO ATUAL DA LITERATURA. PARA PREENCHER ESSA LACUNA, ESTE ESTUDO FORNECE UMA VIS�O GERAL MAIS ATUALIZADA DAS TECNOLOGIAS DE CSP IMPLEMENTADAS EM TODO O MUNDO; ANALISA ARTIGOS DE REVISÃO PUBLICADOS ANTERIORMENTE SOBRE ESTE ASSUNTO, PARA DESTACAR OS PRINCIPAIS ENCONTRADOS E, TAMB�M, AS TEND�NCIAS FUTURAS DE PESQUISAS NO SETOR. O ARMAZENAMENTO DE ENERGIA T�RMICA, O COLETOR SOLAR E OS PRINCIPAIS TIPOS DE PLANTAS SOLARES SÃO ENCONTRADOS COMO TÓPICOS PRINCIPAIS DE DISCUSS�O NESTE ESTUDO. COM UMA BUSCA INTEGRAL, VERIFICA-SE QUE A GERA��O DIRETA DE VAPOR � UMA INOVA��O PROMISSORA, REVISADA NESTE ESTUDO. ESTE ARTIGO FORNECE UMA VIS�O ABRANGENTE SOBRE AS TECNOLOGIAS DE CSP E SUAS PESQUISAS.

Referências

Pavlović TM, Radonjić IS, Milosavljević DD, Pantić LS. A review of concentrating solar power plants in the world and their potential use in Serbia. Renew Sustain Energy Rev 2012; 16:3891–902.

Hasan M, Mahlia T, Nur H. A review on energy scenario and sustainable energy in Indonesia. Renew Sustain Energy Rev 2012; 16:2316–28.

WPB. World population balance population and energy consumption. Available from

〈http://www.worldpopulationbalance.org/population_energy〉; 2015 [Last accessed on 10 October 2016].

ZhangZ, YuanY, ZhangN, SunQ, CaoX, SunL. Thermal properti esen for cement of carbonate ternary via lithium fluoride: a heat transfer fluid for concentrating solar power systems. Renew Energy 2017; 111:523–31.

Ummadisingu A, Soni M. Concentrating solar power–technology, potential and policy in India. Renew Sustain Energy Rev 2011; 15:5169–75.

Ahmed S, Islam MT, Karim MA, Karim NM. Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh. Renew Energy 2014; 72:223–35.

Acordo De Paris, Ministério do Meio Ambiente, 2019. Disponível em: < https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris >. Acesso em: 25 de novembro de 2019.

Sims RE, Rogner H-H, Gregory K. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 2003; 31:1315–26.

IEA. Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action. Paris: IEA. Available from 〈https://www.iea.org/ newsroomandevents/speeches/150504_ETP_slides.pdf〉;2015[Lastaccessed on17 November 2015].

Sharma A. A comprehensive study of solar power in India and World. Renew Sustain Energy Rev 2011; 15:1767–76.

Plano Decenal de Expansão de Energia 2027, Ministério de Minas e Energia, 2019. Disponível em: < http://www.epe.gov.br/sites-pt/publicacoes-dados- abertos/publicacoes/Documents/PDE%202027_aprovado_OFICIAL.pdf>. Acesso em: 25 de novembro de 2019.

Sun J, LiuQ, HongH.Numerical studyof parabolic-trough direct steamgeneration loop in recirculation mode: characteristics, performance and general operation strategy. Energy Convers Manag 2015; 96:287–302.

SolarPACES.Solar thermalelectricity globaloutlook 2016.Availablefrom〈http:// www.solarpaces.org/images/GP-ESTELA-SolarPACES_Solar-Thermal-ElectricityGlobal-Outlook- 2016_Executive-Summary.pdf〉; 2016 [Last accessed on 07 May 2016].

Izquierdo S, Montanes C, Dopazo C, Fueyo N. Analysis of CSP plants for the deï¬nition of energy policies: the influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 2010; 38:6215–21.

Teske S, Leung J, Crespo L, Bial M, Dufour E, Richter C, et al. Solar thermal electricity: Global outlook 2016. Eur Sol Therm Electr Assoc 2016. [20] Philibert C. Technology roadmap: concentrating solar power: OECD/IEA; 2010.

CEC. California Energy Commission solar power plant licensing projects. Available from

〈http://www.energy.ca.gov/maps/renewable/Solar_Power_Plant_Licensing_ Projects.pdf〉; 2014 [Last accessed on 04 May 2017].

Richter C, Teske S, Nebrera J. Concentrating solar power global outlook 09. Greenpeace International/European Solar Thermal Electricity Association (ESTELA)/IEA SolarPACES, Report; 2009.

EU. European Commission, Energy Research Knowledge Centre (ERKC). Thematic research summary – concentrating solar power. Available from 〈https://setis.ec. europa.eu/energy- research/sites/default/ï¬les/library/ERKC_TRS_Concentrating_ solar_power.pdf〉; 2013 [Last accessed on 04 May 2017].

Pitz-Paal R. Encyclopedia of life support system (EOLSS) high temperature solar concentrators. Available from 〈http://www.eolss.net/ebooks/Sample %20Chapters/C08/E6-106-06-00.pdf〉; 2007 [Last accessed on 04 May 2017].

Crane K, Curtright AE, Ortiz DS, Samaras C, Burger N. The economic costs of reducing greenhouse gas emissions under a US national renewable electricity mandate. Energy Policy 2011; 39:2730–9.

Peters M, Schmidt TS, Wiederkehr D, Schneider M. Shedding light on solar technologies—a techno- economic assessment and its policy implications. Energy Policy 2011; 39:6422–39.

Santos-Alamillos FJ, Pozo-Vázquez D, Ruiz-Arias JA, Von Bremen L, TovarPescador J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew Energy 2015; 76:539–50.

Kaygusuz K. Prospect of concentrating solar power in Turkey: the sustainable future. Renew Sustain Energy Rev 2011; 15:808–14.

SolarPACES.SolarPACEStechnology characterizationsolardishsystems. Available from

〈http://www.solarpaces.org/images/pdfs/solar_dish.pdf〉; 2016 [Last accessed on 10 October 2016].

Ab Kadir MZA, Rafeeu Y, Adam NM. Prospective scenarios for the full solar energy development in Malaysia. Renew Sustain Energy Rev 2010; 14:3023–31.

Braun FG, Hooper E, Wand R, Zloczysti P. Holding a candle to innovation in concentrating solar power technologies: a study drawing on patent data. Energy Policy 2011; 39:2441–56.

Cavallaro F. Multi-criteria decision aid to assess concentrated solar thermal technologies. Renew Energy 2009; 34:1678–85.

Poullikkas A, Kourtis G, Hadjipaschalis I. Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew Sustain Energy Rev 2010; 14:2772–83.

El-Tous Y. Assessment of one-axis concentrating solar power technologies in Jordan using fuzzy logic. Int J Energy Convers (IRECON) 2013; 1:238–42.

Kalogirou SA. Solar thermal collectors and applications. Progress Energy Combust Sci 2004; 30:231–95.

Lovegrove K, Taumoefolau T, Paitoonsurikarn S, Siangsukone P, Burgess G, Luzzi A, et al. Paraboloidal dish solar concentrators for multi-megawatt power generation. In: Proceedings of the ISES; 2003. p. 14–9.

SolarPACES. CSP projects around the world. Available from 〈http://www. solarpaces.org/csp- technology/csp-projects-around-the-world〉; 2016 [Last accessed on 07 May 2016].

Mohamad A, Orï¬ J, Alansary H. Heat losses from parabolic trough solar collectors. Int J Energy Res 2014; 38:20–8.

Fernández-García A, Zarza E, Valenzuela L, Pérez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev 2010; 14:1695–721.

CRESESB. Centro de Referência para as energias solar e eólica Sergio de S. Brito, 2016. Coletores Solares (Concentradores cilíndricos-parabólicos). Disponível em:

<http://www.cresesb.cepel.br/index.php?section=com_content&lang=pt&cid=561>. Acesso em: 25, novembro de 2019

IEA. International Energy Agency Technology Roadmap – concentrating solar power. Available from

〈https://www.iea.org/publications/freepublications/ publication/csp_roadmap.pdf〉; 2010 [Last accessed on 12 October 2016].

Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E. Development of an innovative code for the design of thermodynamic solar power plants part A: code description and test case. Renew Energy 2011; 36:1993– 2003.

Müller-Steinhagen H, Trieb F, Trieb F. Concentrating solar power: a review of the technology. Available from 〈http://www.dlr.de/tt/Portaldata/41/Resources/

dokumente/institut/system/publications/Concentrating_Solar_Power_Part_1.pdf〉; 2004 [Last accessed on 16

October 2016].

Brakmann G, Aringhoff R, Geyer M. ESTIA, Brussels: Greenpeace International, Amsterdam, IEA SolarPACES Implementing Agreement. Concentrated solar thermal power – now! Available from

〈http://www.preppers.info/uploads/ Concentrated-Solar-Thermal-Power.pdf〉; 2005 [Last accessed on 04 May 2017].

USDOE. Office of Energy Efficiency & Renewable Energy concentrating solar power. Available from

〈http://energy.gov/eere/sunshot/concentrating-solarpower〉; 2016 [Last accessed on 16 October 2016].

Nixon J, Dey P, Davies P. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process. Energy 2010; 35:5230–40.

Sharma C, Sharma AK, Mullick SC, KandpalTC.Assessment ofsolarthermal power generation potential in India. Renew Sustain Energy Rev 2015; 42:902–12.

Alexopoulos S, Hoffschmidt B. Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus. Renew Energy 2010; 35:1352–6.

SolarPACES. Technology characterization solar power towers. Available from

〈http://www.solarpaces.org/images/pdfs/solar_tower.pdf〉;2016 [Last accessed on 16 October 2016].

Manente G, Rech S, Lazzaretto A. Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems. Renew Energy 2016; 96:172–89.

El Gharbi N, Derbal H, Bouaichaoui S, Said N. A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia 2011; 6:565–72.

Zhang H, Baeyens J, Degrève J, Cacères G. Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 2013; 22:466–81.

Halil Berberoglu. Fuel Producition Using Concentrated Solar Energy, 2013. Disponívelem:<https://www.researchgate.net/publication/258912027_Fuel_Production_Using_Concentrated_S olar_Energy>. Acesso em: 25, novembro de 2019

Charabi Y, Gastli A. GIS assessment of large CSP plant in Duqum, Oman. Renew Sustain Energy Rev 2010;14:835–41.

Pitz-Paal R, Dersch J, Milow B. German Aerospace Center European concentrated solar thermal road- mapping. Available from 〈http://www.promes.cnrs.fr/ uploads/pdfs/ecostar/ECOSTAR.Roadmap.pdf〉; 2004 [Last accessed on 04 May 2017]. [51] Poullikkas A. Economic analysis of power generation from parabolic trough solar thermalplants fortheMediterranean region—acasestudy fortheislandofCyprus. Renew Sustain Energy Rev 2009; 13:2474–84.

Downloads

Publicado

2022-03-17